Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation.

نویسندگان

  • Hao-Jie Zhu
  • Xinwen Wang
  • Brian E Gawronski
  • Bryan J Brinda
  • Dominick J Angiolillo
  • John S Markowitz
چکیده

Clopidogrel pharmacotherapy is associated with substantial interindividual variability in clinical response, which can translate into an increased risk of adverse outcomes. Clopidogrel, a recognized substrate of hepatic carboxylesterase 1 (CES1), undergoes extensive hydrolytic metabolism in the liver. Significant interindividual variability in the expression and activity of CES1 exists, which is attributed to both genetic and environmental factors. We determined whether CES1 inhibition and CES1 genetic polymorphisms would significantly influence the biotransformation of clopidogrel and alter the formation of the active metabolite. Coincubation of clopidogrel with the CES1 inhibitor bis(4-nitrophenyl) phosphate in human liver s9 fractions significantly increased the concentrations of clopidogrel, 2-oxo-clopidogrel, and clopidogrel active metabolite, while the concentrations of all formed carboxylate metabolites were significantly decreased. As anticipated, clopidogrel and 2-oxo-clopidogrel were efficiently hydrolyzed by the cell s9 fractions prepared from wild-type CES1 transfected cells. The enzymatic activity of the CES1 variants G143E and D260fs were completely impaired in terms of catalyzing the hydrolysis of clopidogrel and 2-oxo-clopidogrel. However, the natural variants G18V, S82L, and A269S failed to produce any significant effect on CES1-mediated hydrolysis of clopidogrel or 2-oxo-clopidogrel. In summary, deficient CES1 catalytic activity resulting from CES1 inhibition or CES1 genetic variation may be associated with higher plasma concentrations of clopidogrel-active metabolite, and hence may enhance antiplatelet activity. Additionally, CES1 genetic variants have the potential to serve as a biomarker to predict clopidogrel response and individualize clopidogrel dosing regimens in clinical practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms.

Carboxylesterase 1 (CES1) is the predominant human hepatic hydrolase responsible for the metabolism of many clinically important medications. CES1 expression and activity vary markedly among individuals; and genetic variation is a major contributing factor to CES1 interindividual variability. In this study, we comprehensively examined the functions of CES1 nonsynonymous single nucleotide polymo...

متن کامل

Arylacetamide Deacetylase Is Involved in Vicagrel Bioactivation in Humans

Vicagrel, a structural analog of clopidogrel, is now being developed as a thienopyridine antiplatelet agent in a phase II clinical trial in China. Some studies have shown that vicagrel undergoes complete first-pass metabolism in human intestine, generating the hydrolytic metabolite 2-oxo-clopidogrel via carboxylesterase-2 (CES2) and subsequently the active metabolite H4 via CYP450s. This study ...

متن کامل

Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver.

The aim of this study was to conclusively determine the enzyme responsible for the hydrolysis of oxybutynin in human liver. Hydrolysis in human liver microsomes (HLMs) and human liver cytosol (HLC) followed Michaelis-Menten kinetics with similar K(m) values. In recombinant human carboxylesterase (CES)-expressing microsomes, CES1 was much more efficient than CES2 and yielded a K(m) value more co...

متن کامل

Development of Microemulsion for Solubility Enhancement of Clopidogrel

Clopidogrel, an inhibitor of platelet aggregation, selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Oral bioavailability of clopidogrel is very low (less than 50%), due to its poor water solubility. The aim of this investigation was ...

متن کامل

The effect of ethanol on oral cocaine pharmacokinetics reveals an unrecognized class of ethanol-mediated drug interactions.

Ethanol decreases the clearance of cocaine by inhibiting the hydrolysis of cocaine to benzoylecgonine and ecgonine methyl ester by carboxylesterases, and there is a large body of literature describing this interaction as it relates to the abuse of cocaine. In this study, we describe the effect of intravenous ethanol on the pharmacokinetics of cocaine after intravenous and oral administration in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 344 3  شماره 

صفحات  -

تاریخ انتشار 2013